
Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.2 Unit 4.2 -- ConcurrencyConcurrency 11

ConcurrencyConcurrency

Unit 4.2Unit 4.2



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.2 Unit 4.2 -- ConcurrencyConcurrency 22

Locking

A solution to enforcing serialisability?

read (shareable) lock
write (exclusive) lock
coarse granularity
– easier processing
– less concurrency
fine granularity
– more processing
– higher concurrency



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.2 Unit 4.2 -- ConcurrencyConcurrency 33

Locking cont...

Many systems use locking mechanisms for concurrency control. 
When a transaction needs an assurance that some object will not 
change in some unpredictable manner, it acquires a lock on that 
object.

A transaction holding a read lock is permitted to read an 
object but not to change it.
More than one transaction can hold a read lock for the same 
object.
Usually, only one transaction may hold a write lock on an 
object.
On a transaction schedule, we use ‘S’ to indicate a shared 
lock, and ‘X’ for an exclusive write lock.



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.2 Unit 4.2 -- ConcurrencyConcurrency 44

Locking Locking –– Uncommitted Uncommitted 
DependencyDependency
Locking solves the uncommitted dependency problemLocking solves the uncommitted dependency problem

-- --> S> Sread(rread(r) ) GOGOt4t4

X => X => --ABORTABORT……WAIT…WAIT…t3t3

read(rread(r) ) WAITWAITt2t2

-- => X=> Xwrite(Rwrite(R))t1t1

Lock on RLock on R
Before => afterBefore => after

Transaction BTransaction BTransaction ATransaction ATimeTime



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.2 Unit 4.2 -- ConcurrencyConcurrency 55

DeadlockDeadlock

Deadlock can arise when locks are used, and causes all related Deadlock can arise when locks are used, and causes all related 
transactions to WAIT forevertransactions to WAIT forever

XXXXread(Xread(X) ) WAITWAIT……WAIT…WAIT…t4t4

Lock StateLock StateTransaction BTransaction BTransaction ATransaction ATimeTime

XX

XX

XX

-- => X=> X

XX

XX……WAIT…WAIT………WAIT…WAIT…t5t5

X X read(Yread(Y) ) WAITWAITt3t3

-- => X=> Xwrite(Ywrite(Y))t2t2

--write(Xwrite(X))t1t1

YY



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.2 Unit 4.2 -- ConcurrencyConcurrency 66

Deadlock cont…Deadlock cont…

The `lost update’ The `lost update’ senariosenario results in deadlock with locks. So does the results in deadlock with locks. So does the 
`inconsistency’ scenario.`inconsistency’ scenario.

SSwrite(Rwrite(R))……WAITWAIT……t4t4

SS……WAITWAIT…………WAITWAIT……t5t5

SSwrite(Rwrite(R))t3t3

S => SS => Sread(rread(r))t2t2

-- => S=> Sread(rread(r))t1t1

Lock on RLock on R
Before => afterBefore => after

Transaction BTransaction BTransaction ATransaction ATimeTime



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.2 Unit 4.2 -- ConcurrencyConcurrency 77

Deadlock Handling

Deadlock avoidance
– pre-claim strategy used in operating systems
– not effective in database environments.

Deadlock detection
– whenever a lock requests a wait, or on some perodic

basis.
– if a transaction is blocked due to another transaction, 

make sure that that transaction is not blocked on the first 
transaction, either directly or indirectly via another 
transaction.



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.2 Unit 4.2 -- ConcurrencyConcurrency 88

Deadlock Resolution

If a set of transactions is considered to be deadlocked:

1. choose a victim (e.g. the shortest-lived transaction)
2. rollback ‘victim’ transaction and restart it.

– The rollback terminates the transaction, undoing all its 
updates and releasing all of its locks.

– A message is passed to the victim and depending on the 
system the transaction may or may not be started again 
automatically.



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.2 Unit 4.2 -- ConcurrencyConcurrency 99

Two-Phase Locking

The presence of locks does not guarantee serialisability. If a 
transaction is allowed to release locks before the transaction has 
completed, and is also allowed to acquire more (or even the 
same) locks later then the benifit or locking is lost.

If all transactions obey the ‘two-phase locking protocol’, then all 
possible interleaved executions are guarenteed serialisable.



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.2 Unit 4.2 -- ConcurrencyConcurrency 1010

Two-Phase locking 
cont...
The two-phase locking protocol:

Before operating on any item, a transaction must acquire at 
least a shared lock on that item. Thus no item can be 
accessed without first obtaining the correct lock.
After releasing a lock, a transaction must never go on to 
acquire any more locks.

The technical names for the two phases of the locking protocol 
are the ‘lock-acquisition phase’ and the ‘lock-release phase’.



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.2 Unit 4.2 -- ConcurrencyConcurrency 1111

Other Database 
Consistency Methods
Two-phase locking is not the only approach to enforcing 
database consistency. Another method used in some DMBS is 
timestamping. With timestamping, there are no locks to prevent 
transactions seeing uncommitted changes, and all physical 
updates are deferred to commit time.

locking synchronises the interleaved execution of a set of 
transactions in such a way that it is equivalent to some serial 
execution of those transactions.
timestamping synchronises that interleaved execution in such 
a way that it isequivalent to a particular serial order - the 
order of the timestamps.



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.2 Unit 4.2 -- ConcurrencyConcurrency 1212

Timestamping rules

The following rules are checked when transaction T attempts to 
change a data item. If the rule indicates ABORT, then transaction 
T is rolled back and aborted (and perhaps restarted).

If T attempts to read a data item which has already been 
written to by a younger transaction then ABORT T.
If T attempts to write a data item which has been seen or 
written to by a younger transaction then ABORT T.

If transaction T aborts, then all other transactions which have 
seen a data item written to by T must also abort. In addition, 
other aborting transactions can cause further aborts on other 
transactions. This is a ‘cascading rollback’.


