
Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 11

Storage StructuresStorage Structures

Unit 4.3Unit 4.3

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 22

The Physical StoreThe Physical Store

30 s30 s20 GB20 GB1 MB/s1 MB/sTape DriveTape Drive

300 ms300 ms2.88 MB2.88 MB2 MB/s2 MB/sFloppFlopp DriveDrive

100 ms100 ms0.6 GB0.6 GB5 MB/s5 MB/sCDCD--ROM DriveROM Drive

10 ms10 ms120 GB120 GB10 MB/s10 MB/sHard DriveHard Drive

InstantInstant500 MB500 MB800 MB/s800 MB/sMain MemoryMain Memory

Seek TimeSeek TimeTransfer RateTransfer RateMediumMediumStorageStorage
CapacityCapacity

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 33

Why not all Main
Memory?
The performance of main memory is the greatest of all storage
methods, but it is also the most expensive per MB.

All the other types of storage are ‘persistent’. A persistent
store keeps the data stored on it even when the power is
switched off.
Only main memory can be directly accessed by the
programmer. Data held using other methods must be loaded
into main memory before being accessed, and must be
transferred back to storage from main memory in order to
save the changes.
We tend to refer to storage methods which are not main
memory as ‘secondary storage’.

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 44

Secondary Storage -
Blocks
All storage devices have a block size. Block size is the minimum
amount which can be read or written to on a storage device.
Main memory can have a block size of 1-8 bytes, depending on
the processor being used. Secondary storage blocks are usually
much bigger.

Hard Drive disk blocks are usually 4 KBytes in size.
For efficiency, multiple contiguous blocks can be be
requested.
On average, to access a block you first have to request it,
wait the seek time, and then wait the transfer time of the
blocks requested.
Remember, you cannot read or write data smaller than a
single block.

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 55

Hard Drives

The most common secondary storage medium for DBMS is the
hard drive.

Data on a hard-drive is often arranged into files by the
Operating System.
the DBMS holds the database within one or more files.
The data is arranged within a file in blocks, and the position
of a block within a file is controlled by the DBMS.
Files are stored on the disk in blocks, but the placement of a
file block on the disk is controlled by the O/S (although the
DBMS may be allowed to ‘hint’ to the O/S concerning disk
block placement strategies).
File blocks and disk blocks are not necessarily equal in size.

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 66

DBMS Data Items

Data from the DBMS is split into records.
a record is a logical collection of data items
a file is a collection of records.
one or more records may map onto a single or multiple file blocks.
a single record may map onto multiple file blocks.

Data TypeData TypeTypeTypeDomainDomain

Data Item/FieldData Item/FieldColumnColumnAttributeAttribute

RecordRecordRowRowTupleTuple

FileFileTableTableRelationalRelational

Physical StoragePhysical StorageSQLSQLRelationalRelational

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 77

File Organisations

Serial (or unordered, or heap) - records are written to
secondary storage in the order in which they are created.
Sequential (or sorted, or ordered) - records are written to
secondary storage in the sorted order of a key (one or more
data items) from each record.
Hash - A ‘hash’ function is applied to each record key, which
returns a number used to indicate the position of the record in
the file. The hash function must be used for both reading and
writing.
Indexed - the location in secondary storage of some (partial
index) or all (full index) records is noted in an index.

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 88

Storage Scenario

To better explain each of these file organisations we will create 4
records and place them in secondary storage. The records are
created by a security guard, and records who passes his desk in
the morning and at what time they pass.
The records therefore each have three data items; ‘name’, ‘time’,
and ‘id number’. Only four people arrive for work:

1. name=‘Russell’ at time=‘0800’ with id_number=‘004’.
2. name=‘Greg’ at time=‘0810’ with id_number=‘007’.
3. name=‘Jon’ at time=‘0840’ with id_number=‘002’.
4. name=‘Cumming’ at time=‘0940’ with id_number=‘003’.

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 99

Serial OrganisationSerial Organisation

1 2 3 4

Russell
0800
004

Greg Jon Cumming
0810 0840 0940
007 002 003

• Writing - the data is written at the end of the previous record.
• Reading -

• reading records in the order they were written is a cheap
operation.

• Trying to find a particular record means you have to read each
record inturn until you locate it. This is expensive.

• Deleting - Deleting data in such an structure usually means marking
the data as deleted (thus not actually removing it) which is cheap
but wasteful or rewriting the whole file to overwrite the deleted
record (space-efficient but expensive).

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 1010

Sequential Sequential
OrganisationOrganisation

Russell
0800
004

Jon
0840
002

Cumming
0940
003

Greg
0810
007

3 41 2

• Writing - records are in ‘id number’ order, thus new records may need
to be inserted into the store needing a complete file copy (expensive).

• Deleting - as with serial, either leave holes or perform make file copies.
• Reading -

• reading records in ‘id number’ order is cheap.
• the ability to chose sort order makes this more useful than serial.
• ‘binary search’ could be used. Goto middle of file - if record key

greater than that wanted search the low half, else search the high
half, until the record is found. (average accesses to find something is
log2 no_of_records.)

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 1111

Hash OrganisationHash Organisation

Greg
0810
007

Russell
0800
004

Jon
0840
002

Cumming
0940
003

3 41 2

Key (id number) Key MOD 6

• Writing - Initially the file has 6 spaces (n MOD 6 can be 0-5). To write,
calculate the hash and write the record in that location (cheap).

• Deleting - leave holes (wasteful) by marking the record deleted (cheap);
• Reading -

• reading records an order is expensive.
• finding a particular record from a key is cheap and easy.
• If two records can result in the same hash number, then a strategy

must be found to solve this problem (which will incur overheads).

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 1212

Indexed Sequential
Access Method
The Indexed Sequential Access Method (ISAM) is frequently used for
partial indexes.

there may be several levels of indexes, commonly 3
each index-entry is equal to the highest key of the records or
indices it points to.
the records of the file are effectively sorted and broken down into
small groups of data records.
the indices are built when the data is first loaded as sorted records.
the index is static, and does not change as records are inserted and
deleted
insertion and deletion adds to one of the small groups of data
records. As the number in each group changes, the performance
may deteriorate.

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 1313

ISAM ExampleISAM Example

100 500 1000 1500 2000 Highest Key
Pointer

...........

...........

1, 2, 3, 4 17,19,20 1981,1984 1977,1999,2000....

20 40 60 80 100 1920 1940 1960 1980 2000

4 8 12 16 20 1984 1988 1992 1996 2000

1st Level Index

2nd Level Index

3rd Level Index

Data Records

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 1414

B+ Tree Index

With B+ tree, a full index is maintained, allowing the ordering of
the records in the file to be independent of the index. This allows
multiple B+ tree indices to be kept for the same set of data
records.

the lowest level in the index has one entry for each data
record.
the index is created dynamically as data is added to the file.
as data is added the index is expanded such that each record
requires the same number of index levels to reach it (thus
the tree stays ‘balanced’).
the records can be accessed via an index or sequentially.

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 1515

B+ Tree ExampleB+ Tree Example

90 60 55 70 65 30 10 69

10 30 55 60 65 69 70 90

30 55 69 70

60

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 1616

Building a B+ Tree

Only nodes at the bottom of the tree point to records, and all other
nodes point to other nodes. Nodes which point to records are called
leaf nodes.
If a node is empty the data is added on the left.
If a node has one entry, then the left takes the smallest valued key
and the right takes the biggest.

If a node is full and is a leaf node, classify the keys L (lowest), M
(middle value) and H (highest), and split the node.

If a node is full and is not a leaf node, classify the
keys L (lowest), M (middle value) and H (highest),
and split the node.

6030

60

L M H

M

L H

M

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 1717

B+ Tree Build B+ Tree Build
ExampleExample

60

55 60 70 90

60

55 60 907065

70

90 60 90

60

55 60 90

Add 90 Add 60 Add 55 Add 70

Add 65 Add 30

90706555 6030

70

60

55

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 1818

B+ Tree Build B+ Tree Build
Example Cont…Example Cont…

90706560

70

60

55

30 5510

30

Add 10

6560

60

55

30 5510

30

Add 69

7069

907069

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 1919

Index Structure and
Access

The top level of an index is usually held in memory. It is read
once from disk at the start of queries.
Each index entry points to either another level of the index, a
data record, or a block of data records.
The top level of the index is searched to find the range within
which the desired record lies.
The appropriate part of the next level is read into memory
from disc and searched.
This continues until the required data is found.
The use of indices reduce the amount of file which has to be
searched.

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 2020

Costing Index and
File Access

The major cost of accessing an index is associated with
reading in each of the intermediate levels of the index from a
disk (milliseconds).
Searching the index once it is in memory is comparatively
inexpensive (microseconds).
The major cost of accessing data records involves waiting for
the media to recover the required blocks (milliseconds).
Some indexes mix the index blocks with the data blocks,
which means that disk accesses can be saved because the
final level of the index is read into memory with the
associated data records.

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 2121

Use of Indexes

A DBMS may use different file organisations for its own
purposes.
A DBMS user is generally given little choice of file type.
A B+ Tree is likely to be used wherever an index is needed.
Indexes are generated:
– (Probably) for fields specified with ‘PRIMARY KEY’ or

‘UNIQUE’ constraints in a CREATE TABLE statement.
– For fields specified in SQL statements such as CREATE

[UNIQUE] INDEX indexname ON tablename (col [,col]...);
Primary Indexes have unique keys.
Secondary Indexes may have duplicates.

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 2222

Use of Indexes cont...

An index on a column which is used in an SQL ‘WHERE’ predicate is
likely to speed up an enquiry.
– this is particularly so when ‘=’ is involved (equijoin)
– no improvement will occur with ‘IS [NOT] NULL’ statements
– an index is best used on a column which widely varying data.
– indexing and column of Y/N values might slow down enquiries.
– an index on telephone numbers might be very good but an index

on area code might be a poor performer.
Multicolumn index can be used, and the column which has the
biggest range of values or is the most frequently accessed should be
listed first.
Avoid indexing small relations, frequently updated columns, or those
with long strings.

Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright
@ Napier University@ Napier University

Unit 4.3 Unit 4.3 -- Storage StructuresStorage Structures 2323

Use of indexes cont...

There may be several indexes on each table. Note that partial
indexing normally supports only one index per table.
Reading or updating a particular record should be fast.
Inserting records should be reasonably fast. However, each
index has to be updated too, so increasing the indexes makes
this slower.
Deletion may be slow.
– particularly when indexes have to be updated.
– deletion may be fast if records are simply flagged as

‘deleted’.

