
DBMS Implementation

Chapter 6.4
V3.0
Copyright @ Napier University
Dr Gordon Russell



Implementing a DBMS

• The DBMS takes in SQL
• The SQL must be processed.
• The results of the SQL returned to the user/ 

Applied to the Database



SQL

executer

parser
SQL

user

transaction

tables

disks
SQL



Parser

• Must tokenise the SQL
• Time consuming
• Make use of an SQL cache.
• To increase usefulness, use placemarkers

SELECT empno FROM employee
WHERE surname = ?



Executer

• Takes SQL tokens
• Converts tokens into Relational Algebra
• Optimises the RA
• Sends RA requests down the tree
• Repackages results into Tables



• Users – user level security
• Transactions – run queries independently
• Tables – all underlying concepts are table based.
• Cache – cache disk traffic as much as possible
• Disks – the only area of persistent storage



User Concept
MySQL Oracle

databases

users users

databases

tables tables

columns columns



Tablespaces

• Tablespace/database . Table . Column

• Accessing the table car, column owner, in 
tablespace vehicles would be:

SELECT vehicles.car.owner
FROM vehicles.car



Disk vs Memory

• Speed – Memory 1000 times faster
• Size – Disk 100 times bigger for same cost
• Persistence – Disk remembers through loss of 

power
• Access Time – ns vs ms
• Block size – Disk is 4 KB blocks, memory “word”.



Disk Arrangements

• Need to find what we want on disk without loading 
more than we need.

• Need to handle disks effectively, especially with:
– Indexes
– Transaction logs
– Disk Requests
– Data Prediction



Indexing

• Want a catalogue or index whereby we can find 
things quickly without looking at each block.

• Many different techniques.
• Here consider only two:
– Hash tables
– Binary Trees



Hash Tables

• Hash tables are a fast way to find things:
– They have a hash function
– They have buckets

• The hash works out which bucket to stick 
information into…



Hash Tables

• Consider

CREATE TABLE test (
id INTEGER primary key

, name varchar(100),)

Insert into test values (1,’Gordon’);
Insert into test values (2,’Jim’);
Insert into test values (4,’Andrew’);
Insert into test values (3,’John’);



Initial Example

1
2
4
3

Store hash

1 2 3 4

1 2 3 4



Adding 10,12,6

10
12
6

Store hash

1 2 3 4

1 2 3 4

10 12

6



Binary Trees

• Modern Databases rely on binary trees for 
indexing

• One of the most modern version of a binary tree is 
called a B+ Tree.

• The B+ means that the depth of the tree remains 
roughly in balance.



B+ Tree Index

With B+ tree, a full index is maintained, allowing the ordering of 
the records in the file to be independent of the index. This 
allows multiple B+ tree indices to be kept for the same set of 
data records.

the lowest level in the index has one entry for each data 
record.
the index is created dynamically as data is added to the file.
as data is added the index is expanded such that each 
record requires the same number of index levels to reach it 
(thus the tree stays ‘balanced’).
the records can be accessed via an index or in insertion 
order.



B+ Tree Example

90 60 55 70 65 30 10 69

10 30 55 60 65 69 70 90

30 55 69 70

60



B+ Tree Build Example

60

55 60 70 90

60

55 60 907065

70

90 60 90

60

55 60 90

Add 90 Add 60 Add 55 Add 70

Add 65 Add 30

90706555 6030

70

60

55



B+ Tree Build Example Cont…

90706560

70

60

55

30 5510

30

Add 10

6560

60

55

30 5510

30

Add 69

7069

907069



Index Structure and Access

• The top level of an index is usually held in memory. It is read 
once from disk at the start of queries.

• Each index entry points to either another level of the index, a 
data record, or a block of data records.

• The top level of the index is searched to find the range within 
which the desired record lies.

• The appropriate part of the next level is read into memory 
from disc and searched.

• This continues until the required data is found.
• The use of indices reduce the amount of file which has to be 

searched.



Costing Index and File Access

• The major cost of accessing an index is associated with 
reading in each of the intermediate levels of the index from a 
disk (milliseconds).

• Searching the index once it is in memory is comparatively 
inexpensive (microseconds).

• The major cost of accessing data records involves waiting for 
the media to recover the required blocks (milliseconds).

• Some indexes mix the index blocks with the data blocks, 
which means that disk accesses can be saved because the 
final level of the index is read into memory with the 
associated data records.



Use of Indexes

• A DBMS may use different file organisations for its own 
purposes.

• A DBMS user is generally given little choice of file type.
• A B+ Tree is likely to be used wherever an index is needed.
• Indexes are generated:

– (Probably) for fields specified with ‘PRIMARY KEY’ or 
‘UNIQUE’ constraints in a CREATE TABLE statement.

– For fields specified in SQL statements such as CREATE 
[UNIQUE] INDEX indexname ON tablename (col [,col]...);

• Primary Indexes have unique keys.
• Secondary Indexes may have duplicates.



Use of Indexes cont...

• An index on a column which is used in an SQL ‘WHERE’
predicate is likely to speed up an enquiry.
– this is particularly so when ‘=’ is involved (equijoin)
– no improvement will occur with ‘IS [NOT] NULL’

statements
– an index is best used on a column which widely varying 

data.
– indexing and column of Y/N values might slow down 

enquiries.
– an index on telephone numbers might be very good but 

an index on area code might be a poor performer.



Use of Indexes cont...

• Multicolumn index can be used, and the column 
which has the biggest range of values or is the 
most frequently accessed should be listed first.

• Avoid indexing small relations, frequently updated 
columns, or those with long strings.



Use of indexes cont...

• There may be several indexes on each table. Note that 
partial indexing normally supports only one index per table.

• Reading or updating a particular record should be fast.
• Inserting records should be reasonably fast. However, each 

index has to be updated too, so increasing the indexes 
makes this slower.

• Deletion may be slow.
– particularly when indexes have to be updated.
– deletion may be fast if records are simply flagged as 
‘deleted’.



Shadow Paging

• The method for handling transaction logs 
discussed to far is relatively simplistic.

• Modern databases usually use Shadow Paging.
• The main difference is that the log has copies of 

whole disk blocks, rather than changed attributes.



Algorithm

1. If the disk block to be changed has been copied 
to the log, jump to 3.

2. Copy the disk block to the transaction log.
3. Write the change to the original log.

• On commit, delete the log copies
• On abort, copy the blocks back to their original 

place.



Disk Parallelism

• Oracle
2.8M control01.ctl
2.8M control01.ctl
2.8M control01.ctl

11M redo01.log
11M redo01.log
11M redo01.log

351M sysaux01.dbf
451M system01.dbf

3.1M temp01.dbf
61M undotbs01.dbf
38M Users01.dbf



• DBMS designed for multiple users.
• One user running 1 query may be as fast as 100 

similar difficulty queries running simultaneously.

• Bottom line: efficient databases are ones kept full 
of queries…


	DBMS Implementation
	Implementing a DBMS
	
	Parser
	Executer
	
	User Concept
	Tablespaces
	Disk vs Memory
	Disk Arrangements
	Indexing
	Hash Tables
	Hash Tables
	Initial Example
	Adding 10,12,6
	Binary Trees
	B+ Tree Index
	B+ Tree Example
	B+ Tree Build Example
	B+ Tree Build Example Cont…
	Index Structure and Access
	Costing Index and File Access
	Use of Indexes
	Use of Indexes cont...
	Use of Indexes cont...
	Use of indexes cont...
	Shadow Paging
	Algorithm
	Disk Parallelism
	

