
SQL – Simple Queries

Chapter 3.1
V3.0
Copyright @ Napier University
Dr Gordon Russell

Introduction

• SQL is the Structured Query Language
• It is used to interact with the DBMS
• SQL can

– Create Schemas in the DBMS
– Alter Schemas
– Add data
– Remove data
– Change data
– Access Data

DSL

• SQL is a Data Sub Language – DSL
• This is a combination of two languages

– DDL – Data Definition Language
– DML – Data Manipulation Language

• The main way of accessing data is using the DML command
SELECT.

• The abilities of the SELECT command forms the majority of
this material on SQL

Database Models

A data model comprises
• a data structure
• a set of integrity constraints
• operations associated with the data structure

Examples of data models include:
• hierarchic
• network
• relational

Relational Databases

The relational data model comprises:

• relational data structure
• relational integrity constraints
• relational algebra or equivalent (SQL)

– SQL is an ISO language based on relational
algebra

– relational algebra is a mathematical formulation

Relational Data Structure

A relational data structure is a collection of tables or
relations.

• A relation is a collection of rows or tuples
• A tuple is a collection of columns or attributes
• A domain is a pool of values from which the actual

attribute values are taken.

Relational Structure cont

D escription Price

T uple

A ttributes

D om ain

M E N U R elation or
T able

Domain and Integrity Constraints

• Domain Constraints
– limit the range of domain values of an attribute
– specify uniqueness and ‘nullness’ of an attribute
– specify a default value for an attribute when no value is

provided.
• Entity Integrity

– every tuple is uniquely identified by a unique non-null
attribute, the primary key.

• Referential Integrity
– rows in different tables are correctly related by valid key

values (‘foreign’ keys refer to primary keys).

Example Database

• In order to better understand SQL, all the example queries
make use of a simple database.

• The database is formed from 2 tables, CAR and DRIVER.
• Each car may be owned by a DRIVER.
• A DRIVER may own multiple CARs.

CARDRIVER

DRIVER

3 Dec 1986Bob Jones

23 Mar 1981Bob Smith

11 Jan 1980Jim Smith

DOBNAME

CAR

13000BLUESMARTSC04 BFE

Bob Jones6000GREENFIATK555 GHT

Bob Smith22000BLUEMERCED
ES

A155 BDE

Jim Smith11000BLUESKODAJ111 BBB

Jim Smith12000REDFORDF611 AAA

OWNERPRICECOLOURMAKEREGNO

• Each column holds data of a particular type
– Integer, string, decimal, blobs
– The range of values can be further constrained

• If a column in a row contains no data, it is NULL.
• It can indicate no possible value or unavailable data.

• All rows must differ from each other in some way
• Sometimes a row is called a tuple
• Cardinality is the number of rows of a table
• Arity is the number of columns of a table

Primary Keys

• In the design section the idea of a Primary Key is defined.
• A Primary Key is a group of 1 or more columns which, when

taken together, is unique in the table
• No part of a primary key can be NULL.
• In our example,

– DRIVER: the primary key is NAME
– CAR: the primary key is REGNO

• In our example this means that no two drivers can have the
same name. In the real world this would be a problem, but
this is just an example.

Referential Integrity

• Note that there is a link between CAR and DRIVER via
OWNER.

• If there is a value in OWNER, then this value must also
appear somewhere in DRIVER.

• If you change a driver’s name in DRIVER, you must make
sure the same change is made in OWNER of CAR.

• The DBMS enforces the rules.
• If you try to break the rules the DBMS reports the problem as

a REFERENTIAL INTEGRITY error.

SQL Basics

• Basic SQL statements include
– CREATE – a data structure
– SELECT – read one or more rows from a table
– INSERT – one of more rows into a table
– DELETE – one or more rows from a table
– UPDATE – change the column values in a row
– DROP – a data structure

• In this lecture the focus is on SELECT.

Simple SELECT

• SELECT column FROM tablename
• SELECT column1,column2,column3 FROM tablename
• SELECT * from tablename
• SELECT * from CAR;

13000BLUESMARTSC04 BFE
Bob Jones6000GREENFIATK555 GHT
Bob Smith22000BLUEMERCEDESA155 BDE
Jim Smith11000BLUESKODAJ111 BBB
Jim Smith12000REDFORDF611 AAA
OWNERPRICECOLOURMAKEREGNO

SELECT regno from CAR;

SC04 BFE
K555 GHT
A155 BDE
J111 BBB
F611 AAA
REGNO

SELECT colour,owner from CAR;

BLUE
Bob JonesGREEN
Bob SmithBLUE
Jim SmithBLUE
Jim SmithRED
OWNERCOLOUR

Formatting

• SPACES do not matter
• NEWLINES do not matter
• Good practice to put ; at the end of the query.
• CASE (except between single quotes) does not matter.
• These are all valid:

SELECT REGNO FROM CAR;
SElecT regno

From Car
;

Comments

• To give you the ability to make notes in queries you are
allowed to have comments.

• Comments are not executed
• A comment starts with -- and ends with a newline
• They are only permitted within a query.

SELECT regno -- The registration number
FROM car -- The car storage table
;

SELECT filters

• You can have rules in your queries
• These rules are tested for each row your query produces
• If the rule is true, the row is displayed
• If the rule is false, the row is not displayed
• The rule starts with WHERE

SELECT columns
FROM table
WHERE rule

• A simple rule might be to look for a car with a colour of RED.
• The rule would be colour = 'RED'

SELECT regno FROM CAR SELECT regno from CAR
WHERE colour = 'RED'

SC04 BFE
K555 GHT
A155 BDE
J111 BBB
F611 AAA
REGNO

F611 AAA
REGNO

Simple Rule

Note

• Things between quotes is CASE SENSITIVE.
• ‘RED’ is not the same as ‘Red’ or ‘red’

• Rules which mention fields – they can be used if
they appear on the SELECT line or not.

SELECT regno from CAR
WHERE colour = 'RED' F611 AAA

REGNO
RED
COLOUR

Comparisons

• Valid comparisons include =,!=,<>,<,<=,>,>=
– Colour = ‘RED’ The colour must be red
– Colour != ‘RED’ The colour is not red
– Colour <> ‘Red’ Same as !=
– Price > 10000 More than 10000
– Price >= 10000 More than or equal to 10000
– Price < 10000 Cheaper than 10000
– Price <=10000 Cheaper or the same as 10000

• Numbers – You can say ‘10000’ or 10000. Strings always
have quotes…

DATE

• Date comparisons can be tricky
• You can use all the normal comparators with dates.

SELECT name,dob SELECT name,dob from driver
from driver where DOB = ‘3 Jan 1986’

3 Dec 1986Bob Jones
23 Mar 1981Bob Smith
11 Jan 1980Jim Smith
DOBNAME

3 Dec 1986Bob Jones

DOBNAME

• The tricky part with dates is remembering that dates get
bigger as you move into the future.

• DATE1>DATE2 indicates DATE1 is in the future after
DATE2.

SELECT name,dob from driver
WHERE DOB >= ‘1 Jan 1981’

3 Dec 1986Bob Jones
23 Mar 1981Bob Smith
DOBNAME

DATE Syntax

• It must be in quotes
• Each DBMS handles dates in a slightly different way
• Dates like ‘1 Jan 2003’ work quite well.
• Oracle permits dates like ‘1-Jan-2003’
• Oracle also permits dates like ‘1-Jan-03’

– Be caseful … if you type this it will assume 2003.
– If you mean 1984 type 1984 not –04.

• You must always specify a day and a month. If you do not
the DBMS will report an error.

BETWEEN

• When dealing with dates sometimes you want to test to see
if a field value falls between two dates.

• The easiest way to do this is with BETWEEN

• Find all drivers born between 1995 and 1999
SELECT name,dob from driver
WHERE DOB between ‘1 Jan 1985’ and ’31 Dec 1999’

• Between works for other things, not just dates…
SELECT regno from CAR
where price between 5000 and 10000;

NULL

• NULL indicates that something has no value
• It is not a value, and you cannot use normal comparison

operators.
• For instance, looking for cars without owners…

Wrong: SELECT regno from car where owner = NULL
Wrong: SELECT regno from car where owner = ‘NULL’

• Instead there are two special operators, IS NULL, and
IS NOT NULL

SELECT regno from car
WHERE OWNER is null

SELECT regno from car
WHERE OWNER is not null

SC04 BFE
REGNO

SC04 BFE
K555 GHT
A155 BDE
J111 BBB
F611 AAA
REGNO

LIKE

• Sometimes you want to have a rule involving
partial strings, substrings, or wildcards

• LIKE does this, and is a slot-in replacement for ‘=‘
• If the string contains ‘%’ or ‘_’, LIKE uses them to

support wildcards.
– % - Matches 0 or more characters in the string
– _ - Matches exactly 1 character in the string

Examples

• Name LIKE ‘Jim Smith’ e.g. Jim Smith
• Name LIKE ‘_im Smith’ e.g. Tim Smith
• Name LIKE ‘___ Smith’ e.g. Bob Smith
• Name LIKE ‘% Smith’ e.g. Frank Smith
• Name LIKE ‘% S%’ e.g. Brian Smart
• Name LIKE ‘Bob %’ e.g. Bob Martin
• Name LIKE ‘%’ i.e. match anyone

• LIKE is more expensive than =
• If you are not using wildcards, always use = rather than

LIKE.

	SQL – Simple Queries
	Introduction
	DSL
	Database Models
	Relational Databases
	Relational Data Structure
	Relational Structure cont
	Domain and Integrity Constraints
	Example Database
	DRIVER
	CAR
	
	Primary Keys
	Referential Integrity
	SQL Basics
	Simple SELECT
	
	
	Formatting
	Comments
	SELECT filters
	Simple Rule
	Note
	Comparisons
	DATE
	
	DATE Syntax
	BETWEEN
	NULL
	
	LIKE
	Examples

