
SQL - Subqueries and
Schema

Chapter 3.4
V3.0
Copyright @ Napier University
Dr Gordon Russell

Subqueries

• Subquery – one select statement inside another
• Used in the WHERE clause
• Subqueries can return many rows.
• Subqueries can only return 1 column.
• Used as a replacement for view or selfjoin.
• Some programmers see them as easier to understand than

other options.
• The main drawback is that they can be much slower than

selfjoin or view.

Simple Example

• Who in the database is older than Jim Smith?

SELECT dob FROM driver WHERE name = ‘Jim Smith’;

SELECT name FROM driver WHERE dob > ’11 Jan 1980’;

11 Jan 1980
Dob

Bob Jones
Bob Smith
name

• Combined together:

SELECT name
FROM driver
WHERE dob > (SELECT dob

FROM driver
WHERE name = ‘Jim Smith’)

;

• This query will only work if there is only 1 Jim Smith.

ANY and ALL

• To support subqueries which return more than 1 row we
need some additional operators… ANY and ALL.

• ANY – changes the rule so that it must be true for at least
one of the rows returned from the subquery.

• ALL – changes the rule so that it must be true for each and
every row returned from the subquery.

• The ANY or ALL operator goes immediately before the open
bracket of the subquery.

Example 1

• What cars are the same solour as a car owned by Jim
Smith?

• Jim owns 2 cars, one is RED and the other BLUE. We are
looking for cars which are either RED or BLUE.

SELECT regno FROM car
WHERE colour = ANY (SELECT colour

FROM car
WHERE owner = ‘Jim Smith’

)

Example 2

• List the drivers younger than all the people who own a blue
car.

• We are looking for the age of drivers who own a BLUE car,
and listing drivers who are younger than all of those ages.

SELECT name,dob FROM driver
WHERE dob < ALL (

SELECT dob
FROM car JOIN driver ON (owner=name)
WHERE colour = ‘BLUE’

) ;

IN and NOT IN

• We earlier saw IN working for sets like (‘A’,’B’).
• A subquery itself returns its result as a set.
• Therefore we can use IN and NOT IN on subqueries.

• Question: Which cars are the same colour as one of Jim
Smith’s cars?

SELECT regno FROM car
WHERE colour IN (SELECT colour FROM car

WHERE owner = ‘Jim Smith’)
;

Example of NOT IN

• Question: Which cars DO NOT have the same
colour as one of Jim Smith’s cars?

SELECT regno FROM car
WHERE colour NOT IN (SELECT colour FROM car

WHERE owner = ‘Jim Smith’)
;

EXISTS

• If a question involves discovering uniqueness, then it can
probably be easily solved using the operator EXISTS or NOT
EXISTS.

• The EXISTS operator tests the result of running a subquery,
and if any rows are returned it is TRUE, else it is FALSE.

• NOT EXISTS does the opposite of EXISTS.

• Note that subqueries can actually refer to tables defined
outside the brackets which define the subquery. This is
exceptionally useful, but can be slow to execute and
confusing to look at.

• Question: List the colours which are only used once in the
database.

SELECT colour
FROM car a
WHERE exists (

SELECT colour -- The row does not matter
FROM car b -- unique name from a
WHERE a.colour = b.colour -- Same colour as a
AND a.regno != b.regno -- Different car from a

);

UNION

• Sometimes you might write two or more queries which
produce the same types of answer, and you want to combine
the rows of these answers into a single result.

• UNION does this, and basically allows you to join different
SELECT statement together.

• UNION automatically removes duplicate rows.

• For the next example, assume a row has been added to the
DRIVER table for David Davis, but that he owns no cars.

• Question: List all drivers in the DRIVER table, together with
how many cars they own.

SELECT name,count(*)
FROM driver JOIN car on (name = owner)

David Davis is missing, as he did not satisfy the JOIN condition.

1Bob Jones
1Bob Smith
2Jim Smith
Count(*)NAME

• Write a query just for David Davis…

SELECT name,0
FROM driver
WHERE name NOT IN (select owner from car)

0David Davis
NAME

• Link the two queries together:
SELECT name,count(*)
FROM driver JOIN car on (name = owner)
UNION
SELECT name,0
FROM driver
WHERE name

NOT IN (select owner
from car)

0David Davis
1Bob Jones
1Bob Smith
2Jim Smith
Count(*)NAME

Changing Data

• We have looked so far at just SELECT
• There are some other useful operators too:

– INSERT
– DELETE
– UPDATE

INSERT

INSERT INTO table_name
[(column_list)] VALUES (value_list)

The column_list can be omitted if every column is to be
assigned a value, otherwise it must list columns to be assigned
values. The value_list is a set of literal values giving the value of
each column in the same order as the column_list, if specified,
or as the columns are defined in the original CREATE TABLE.

insert into driver
values (‘Jessie James’,’31 Nov 1892’);

insert into driver (name,dob)
values (‘John Johnstone’,’1 Aug 1996’);

DELETE

DELETE FROM table_name [WHERE condition];

the rows of table_name which satify the condition are deleted.

• Delete Examples:
DELETE FROM car; -- Delete all rows from CAR
;

DELETE FROM car
WHERE owner is null -- Delete rows for cars without
owners;

UPDATE

UPDATE table_name
SET column_name =
expression,{column_name=expression}
[WHERE condition]

Set all BLUE cars to GREEN
UPDATE car SET colour = ‘GREEN’
WHERE colour = ‘BLUE’

Add VAT/Purchase Tax at 17.5% to all prices
UPDATE car SET price = price * 1.175

View Manipulation

When is a view ‘materialised’ or populated with rows of data?

• When it is defined or
• when it is accessed

If it is the former then subsequent inserts, deletes and updates
would not be visible. If the latter then changes will be seen.

Some systems allow you to chose when views are materialised,
most do not and views are materialised whenever they are
accessed thus all changes can be seen.

VIEW update, insert and delete

Can we change views?
• Yes, provided the primary

key of all the base tables
which make up the view
are present in the view.

Base Table - A Base Table - B
A# B#

View Definition

A# B#
View

VIEW cont...

• This view cannot be
changed because we have
no means of knowing
which row of B to modify

Base Table - A Base Table - B
A# B#

View Definition

A#
View

Controlling Schema

• All the commands so far have allowed data to be looked at,
changes, added to, or removed.

• We also need commands to build, change, and remove table
definitions.

• We call this schema changes.
• The useful commands to do this include:

– CREATE TABLE
– DROP TABLE
– ALTER TABLE

CREATE TABLE

• Column types are needed to tell the DBMS what is allowed
to be stored in each attribute column.

• A selection of types include:
– INTEGER
– REAL
– DECIMAL : Including DECIMAL(5) and DECIMAL(4,2)
– VARCHAR
– CHAR : Pads out strings with spaces
– DATE

SYNTAX

CREATE TABLE tablename (
colname type optionalinfo
,colname type optionalinfo
,other optional info

);

• Optionalinfo could be things like
– a INTEGER REFERENCES b(c)
– PRIMARY KEY
– NOT NULL

• The other optional info at the end of the definition
tend to be rules which impact on more than one
attribute:
– PRIMARY KEY (col1,col2,…)
– FOREIGN KEY (col1,col2,…) REFERENCES

othertable

CAR + DRIVER

CREATE table driver (
name varchar(30) PRIMARY KEY

,dob date NOT NULL
);
CREATE TABLE car (

regno varchar(8) PRIMARY KEY
,make varchar(20)
,colour varchar(30)
,price decimal(8,2)
,owner varchar(30) references driver(name)

);

CAR + DRIVER
Using Additional Info
CREATE table driver (

name varchar(30)
,dob date NOT NULL
,PRIMARY KEY (name)

);

CAR + DRIVER
Using Additional Info
CREATE TABLE car (

regno varchar(8)
,make varchar(20)
,colour varchar(30)
,price decimal(8,2)
,owner varchar(30)
,FOREIGN KEY(owner) references driver(name)
,PRIMARY KEY(regno)

);

DROP TABLE

• If you want to delete a table you use DROP TABLE.
– DROP TABLE tablename

• The main difficulty with dropping a table is referential
integrity. As CAR refers to DRIVER, you must delete CAR
first then DRIVER. If you try to delete DRIVER first, the
system would report an error.

DROP TABLE car;
DROP TABLE driver;

MODIFY TABLE

• To change a table which already exists you could
use MODIFY TABLE.

• It is a complex command with many different
options.

• A simple example of it would be adding an
address field to the DRIVER table.

ALTER TABLE driver ADD address varchar(50)

SELECT - Order of Evaluation

SELECT [DISTINCT] column_name 5,6 eliminate unwanted data
FROM label_list 1 Cartesian Product
[WHERE condition] 2 eliminate unwanted rows
[GROUP BY column_list 3 group rows
[HAVING condition]] 4 eliminate unwanted groups
[ORDER BY column_list[DESC]] 7 sort rows

The last four components are optional.

	SQL - Subqueries and Schema
	Subqueries
	Simple Example
	
	ANY and ALL
	Example 1
	Example 2
	IN and NOT IN
	Example of NOT IN
	EXISTS
	
	UNION
	
	
	
	Changing Data
	INSERT
	DELETE
	UPDATE
	View Manipulation
	VIEW update, insert and delete
	VIEW cont...
	Controlling Schema
	CREATE TABLE
	SYNTAX
	
	CAR + DRIVER
	CAR + DRIVERUsing Additional Info
	CAR + DRIVERUsing Additional Info
	DROP TABLE
	MODIFY TABLE
	SELECT - Order of Evaluation

